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Abstract The influence of preprocessing of molecular
descriptor vectors for solving classification tasks was
analyzed for drug/nondrug classification by artificial
neural networks. Molecular properties were used to form
descriptor vectors. Two types of neural networks were
used, supervised multilayer neural nets trained with the
back-propagation algorithm, and unsupervised self-orga-
nizing maps (Kohonen maps). Data were preprocessed by
logistic scaling and histogram equalization. For both
types of neural networks, the preprocessing step signifi-
cantly improved classification compared to nonstandard-
ized data. Classification accuracy was measured as pre-
diction mean square error and Matthews correlation co-
efficient in the case of supervised learning, and quanti-
zation error in the case of unsupervised learning. The
results demonstrate that appropriate data preprocessing is
an essential step in solving classification tasks.

Keywords Cheminformatics · Drug-likeness ·
Prediction · Self-organizing map · Structure–activity
relationship

Abbreviations BP: Back-propagation algorithm ·
GDA: Gradient descent with adaptive learning rate ·
GDM: Gradient descent with momentum ·
HTS: High-throughput screening ·
LM: Levenberg–Marquardt · mcc: Matthews correlation
coefficient · MFFN: Multilayer feedforward neural
network · mse: Mean square error · QE: Quantization
error · QSAR: Quantitative structure–activity

relationship · RP: Resilient back-propagation algorithm ·
SOM: Self-organizing map · SVM: Support vector
machine · TE: Topology error

Introduction

Ever since the “drug-likeness” approach was pioneered in
independent studies of Ajay and coworkers [1] as well as
Sadowski and Kubinyi [2] some years ago, several ma-
chine learning systems performing various kinds of “like-
ness” predictions have been developed. [3, 4] The basic
idea is to define two classes of compounds, one sharing a
desired property (the positive set), and another lacking this
property (the negative set). Then, a binary classifier, e.g. a
separating hyperplane, is developed which is applied to
early-phase virtual screening and compound library shap-
ing. [5] The theory of artificial neural networks provides us
with several methods for classification and function ap-
proximation. [6] Such systems have been successfully
applied to many QSAR studies. [6, 7, 8] A more recent
addition to the cheminformatics toolbox is the support
vector machine (SVM) which was originally developed as
a binary classifier system and is often compared to neural
network-based prediction routines. [9] Independent of the
particular classification method used and the particular
project under investigation, appropriate preprocessing of
data is essential for successful feature extraction. In the
present study we used drug/nondrug classification as an
example application to investigate the influence of data
scaling on the classification ability of two types of neural
networks: (i) the supervised, multilayer feedforward neural
network (MFFN) [10, 11] trained by the back-propagation
(BP) algorithm, [12] and (ii) the unsupervised self-orga-
nizing map (SOM). [13, 14, 15, 16] To measure the in-
fluence of data preprocessing on the classification results
obtained by both methods, we determined the correlation
coefficient according to Matthews [17] and calculated the
topology error and quantization error in the case of SOM,
[18] and the prediction mean square error in the case of the
BP-networks. As a result of this work we found that

A. Givehchi ()) · G. Schneider
Institut f�r Organische Chemie und Chemische Biologie,
Johann Wolfgang Goethe-Universit�t,
Marie-Curie-Str. 11, 60439 Frankfurt, Germany
e-mail: alireza.givehchi@chemie.uni-frankfurt.de
Tel.: +49 (0 69 79829824)

A. Givehchi
Klinik und Poliklinik f�r Neurochirurgie,
Klinik und Poliklinik f�r Neurologie,
Universit�tsklinikum M�nster,
Albert-Schweitzer-Str. 33, 48129 M�nster, Germany



classification accuracy can be significantly improved when
data preprocessing by scaling is applied.

Materials and methods

Data preparation and preprocessing

The data set which was used here was based on a compilation of
“drugs” and “nondrugs” by Sadowski and Kubinyi. [2] For the
present study, 4,998 drugs and 4,210 nondrugs were used. [19] 32
descriptors were generated for each compound with the software
package MOE (Molecular Operation Environment [20]), resulting
in a 32-dimensional vector representation (Table 1). This set of
descriptor belongs to the 2D descriptors provided by MOE. [20]

For data preprocessing we used either logistic scaling or his-
togram equalizing, as implemented in the SOM toolbox of the
MatLab software package. [21, 22] These scaling methods are part
of the toolbox function “som_scale”. Both method scale the vectors
to the range [0,1].

Logistic scaling, which is also called “softmax” transformation,
first performs variance scaling and then transforms the data with the
following logistic function.

v ¼ 1

1þ e�
v��v
sð Þ ð1Þ

where v is the descriptor vector, v̄ is the mean value of v, and s is
the standard deviation of v. Histogram equalization [21] transforms
the descriptor vectors in three steps: (i) ascending ordering of the
values of the descriptor vector; (ii) replacing the values by their
ordinal numbers, and (iii) scaling of the ordinal numbers to the
interval [0,1].

Multilayer feedforward neural networks with back-propagation

MFFNs with up to two layers of hidden units were used to find a
classifier separating drugs from nondrugs. [23] There exists a va-
riety of algorithms to train a multilayer neural net. In this study we
relied on the BP method [10, 11, 12, 24] in combination with
several algorithms for updating weights and biases: (i) Levenberg–
Marquardt (LM), [24, 25] (ii) gradient descent with momentum
(GDM) [24, 26], (iii) gradient descent with adaptive learning rate
(GDA), [24, 26] and (iv) resilient back-propagation (RP). [24, 26,
27] All networks were implemented within the MATLAB pro-
gramming environment using the Neural Network Toolbox. [22,
24] Below we describe how the BP algorithm works for the par-
ticular implementation used in the present study.

If we try to predict the affiliation of the M descriptor vectors~xa

to the classes ~ya through the network function ~f and the weights
f~wg, then we will have a prediction error E:

E ¼ lim
M!1

1
2M

XM

a¼1

~ya �~f ~xa; wf gð Þ
n o2

ð2Þ

In order to minimize E through the variation of the weight
vectors f~wg, we can change the weights according to Eq. (3).

Dwng
ij ¼ �e

@ Ea

@ wng
ij

ð3Þ

where wvg
ij are the weights between the jth neuron of the layer g to

the ith neuron of layer n. Equation (3) is a form of the general
“Delta-rule” (or Widrow-Hoff rule) for supervised parameter up-
date. [28] As one can see, the alteration of the weight vectors
depends on the negative gradient of the error surface. Some of the
weight update methods use additional values for the calculation of
wvg

ij , e.g. gradient descent with momentum (GDM), to prevent
premature convergence of the weight optimization process. � is
called the “learning rate” which is changed during the training
procedure from higher values to lower value. In this way we will
have higher weight vector alteration at the beginning of the net

Table 1 MOE abbreviations and short description of the descriptors used (for details, see URL: http://www.chemcomp.com/Jour-
nal_of_CCG/Features/descr.htm)

No. Abbrevia-
tion

No. Abbreviation

1 VDistEq Vertex distance equality index 17 SlogP_VSA6 Bin 6 SlogP (0.20, 0.25)
2 VDistMa Vertex distance magnitude index 18 SlogP_VSA7 Bin 7 SlogP (0.25, 0.30)
3 wienerPath Wiener path number 19 SlogP_VSA8 Bin 8 SlogP (0.30, 0.40)
4 wienerPol Wiener polarity number 20 SlogP_VSA9 Bin 9 SlogP (0.40, 1.0)
5 Weight Molecular weight 21 SMR Molecular refractivity
6 VAdjEq Vertex adjacency equality 22 SMR_VSA0 Bin 0 SMR (0.000, 0.110)
7 VAdjMa Vertex adjacency magnitude 23 SMR_VSA1 Bin 1 SMR (0.110, 0.260)
8 zagreb Zagreb index 24 SMR_VSA2 Bin 2 SMR (0.260, 0.350)
9 vsa_acc Approximation to the sum of VDW surface areas of

pure hydrogen bond acceptors
25 SMR_VSA3 Bin 3 SMR (0.350, 0.390)

10 vsa_acid Approximation to the sum of VDW surface areas of
acidic atoms

26 SMR_VSA4 Bin 4 SMR (0.390, 0.440)

11 vsa_base Approximation to the sum of VDW surface areas of
basic atoms

27 SMR_VSA5 Bin 5 SMR (0.440, 0.485)

12 vsa_don Approximation to the sum of VDW surface areas of
pure hydrogen bond donors

28 SMR_VSA6 Bin 6 SMR (0.485, 0.560)

13 vsa_hyd Approximation to the sum of VDW surface areas of
hydrophobic atoms

29 SMR_VSA7 Bin 7 SMR (0.560, 1.0)

14 vsa_other Approximation to the sum of VDW surface areas of
atoms typed as “other” (see 9–13)

30 TPSA Topological polar surface area

15 vsa_pol Approximation to the sum of VDW surface areas of
polar (both hydrogen bond donors and acceptors) atoms
(such as -OH)

31 vdw_area Area of van der Waals surface
calculated using a connection
table approximation

16 SlogP_VSA Bin 5 SlogP (0.10, 0.15) 32 vdw_vol VDW volume calculated using a
connection table approximation
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training and lower changes at the end. In contrast, gradient descent
with adaptive learning rate (GDA) changes the learning rate de-
pendent on the difference from the old error and actual error to have

a faster convergence. The smaller the term @ Ea
.
@ wng

ij is, the

smaller the alteration of the weight vectors will be. Obviously, if
the optimum is not near the actual position then a small value of

@ Ea
.
@ wng

ij will not be advantageous. Resilient back-propagation

(RP) is one of the methods to prevent this behavior.
Having defined the method used for calculating weight changes

(Eq. 3), the technique of back-propagation of errors was applied to
perform the actual network update. In BP, the network error E is
promoted from the output layer to the input layer of the network.
The error calculated at the output will be calculated from the desired
output values y and the actual output values produces by the network
(Eq. 4). For reasons of simplicity we assume that all neuron
thresholds Qn

i are zero and all transfer functions sn
i ðxÞ are identi-

cal, obtaining sn
i ðxÞ ¼ sðxÞ; Qn

i ¼ 0 8 i; n. (Note: In this study we
used the standard sigmoidal transfer function for the hidden neurons,
a single linear output neuron, and fan-out input neurons [23]). The
desired output values were 1 for drugs and 0 for nondrugs.

E ¼ 1
2

X

i

yi � si

X

j

wijs
L�1
j

 !

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
fi x; wf gð Þ

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

2

ð4Þ

where sL�1
j are the outputs of the layer before the output layer (the

last hidden layer). L is the total number of layers (three layers were
used in this study). Inserting Eq. (4) in Eq. (5) to calculate the
weight changes,

DwLL�1
ij ¼ �e @ E

@ wLL�1
ij

ð5Þ

we obtain for the weight update in the output layer (Eq. 6):

) DwLL�1
ij ¼ � e

2
2 yi � fið Þð�1Þs0

X

j

wLL�1
ij sL�1

j

 !
sL�1

j

¼ es0ð%Þ yi � fið Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
dL
i

sL�1
j

¼ edL
i sL�1

j ð6Þ

For the next layer the weight changes are given by Eq. (7),

DwL�1L�2
ik ¼ �e @ E

@ wL�1L�2
jk

¼ �e @ E

@ sL�1
j

@ sL�1
j

@ wL�1L�2
jk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

partial derivation because of variable output

¼ � e
2

X

i
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And for all other layers we can calculate the weight changes in
the following way (Eq. 8), only for the connections to the input
layer we must make the assumption n ¼ 1; s0

b ¼ xa
b :

Dwn n�1
a b ¼ e dna|ffl{zffl}

s0
P

l
wLL�2

il
sL�2
l

� �
P

i
wLL�1

ij dL
i

sn�1
b

dn�1
b ¼ s0 %ð Þ

X

a

wnn�1
ab dna

sna ¼ s
X

b

wnn�1
ab sn�1

b

 !
ð8Þ

The mean square error (mse) of the prediction gives the infor-
mation how good the predicted outputs for each molecule are fitted
to the desired output. To determine the accuracy of a binary clas-
sification of the molecules (here: drug or nondrug) we used a
threshold of 0.5 to convert the neural network output to binary
values, and the correlation coefficient according to Matthews, [17]
mcc, was calculated (Eq. 9).

mcc ¼ tp � tn� fp � fnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtnþ fnÞ � ðtnþ fpÞ � ðtpþ fnÞ � ðtpþ fpÞ

p ð9Þ

where tp is the number of true positive, tn is the number of true
negative, fp is the number of false positive, and fn is the number of
false negative predictions. The value of mcc is between �1 and 1. If
the prediction is perfect then the value of fp and fn is 0, and
therefore the value of mcc will be equal to 1. All MFFN models
were developed using the MatLab software package. [22]

The self-organizing map

The SOM can be used for unsupervised classification of data with
nonlinear distribution of classes. [13,14] Since we assume that our
data have nonlinear features, we use this method to obtain accurate
classification results. We used the SOM Toolbox from the Labo-
ratory of Computer and Information Science, Helsinki University.
[21] This Toolbox is also implemented in MATLAB scripting
language. It includes different procedures for preprocessing of the
descriptor vectors, SOM training, classification of descriptor vec-
tors, and visualization of the results. The algorithm implemented in
the SOM Toolbox is based on the Kohonen neural network or
Kohonen map: [13]

1. Initialize weight vectors in the range of [�1,1]
2. Randomly select one of the training descriptor vectors x̄.
3. Find the neuron ~ws with the smallest distance to the selected

descriptor vector.
4. Change the weight vectors according to

~wr ¼ ~wr þ D~wr

where

D~wr ¼ e tð Þhrs ~x�~wrð Þ
and

hrs ¼ exp
�d1 r; sð Þ2

2s2

 !

with

s tð Þ ¼ sinitial sinitial=sfinalð Þt=tmax

e tð Þ ¼ einitial einitial=efinalð Þt=tmax

5. Increase the learning step: t=t+1.
6. If t<tmax then go to step 2, else stop.

Since this algorithm is an unsupervised learning algorithm, it
does not need assertions about the classes of the descriptor vectors
to train the net. In other words, this algorithm finds classes in the
training data without the knowledge about the class assignments of
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the molecules (e.g. the knowledge if one compound is drug or
nondrug). More details about the SOM concept and implementation
can be found elsewhere. [6, 23]

The U-Matrix was used to analyze the distribution of classes of
a trained SOM. [14, 15, 16, 21] It is the unified distance matrix of
the unit weights of the Kohonen map. For an N�M dimensional
map it has the dimension (2N�1�2M�1). The matrix elements uij
represent the distance between the map units ui and uj (with i6¼j),
where uij were calculated as the mean value of the surrounding
matrix elements. We applied fuzzy coloring [29] to displaying the
U-Matrix. With the help of the U-Matrix we wanted to identify
areas of the map which have a preference for data classes and see if
the two classes (drug, nondrug) are well separated. This can help
understanding whether the net is well trained and the descriptors are
appropriate for the classification goal.

The resolution of the trained map must be sufficiently high to be
able to distinguish the descriptor vectors of the different classes.
The quantization error, QE, gives information about this resolution
(Eq. 10). [18] It is the average distance between the descriptor
vectors and their respective map neurons (cluster centroids):

QE ¼ 1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i

~xi � ~miðbestÞð Þ2
vuut ð10Þ

where ~xi is the ith descriptor vector and ~miðbestÞ is the map the
winner neuron for~xi. N is the number of descriptor vectors.

The proportion of all descriptor vectors for which the first and
second neuron centroids are not adjacent was calculated to measure
the topology preservation of a trained SOM. This measure value is
called “topology error”, TE (Eq. 11). [18] The lower its values are,

the smaller is the number of similar classes which are not adjacent
on the map.

TE ¼ n1;2na

N
ð11Þ

where n1,2na is the number of descriptor vectors for which the first
and second neuron centroids are not adjacent. N is the number of
descriptor vectors.

Results and discussion

To show the impact of data scaling on classification and
prediction with neural networks, we chose two types of
artificial neural networks, multilayer neural nets and the
self-organizing map (Kohonen network), in combination
with two scaling algorithms, histogram equalization and
logistic (softmax) scaling. Classifiers were developed for
the task of drug-likeness prediction. We used the neural
networks to perform binary classification of the com-
pounds (drug and nondrug). The quantization error (QE)
and the topology error (TE) were calculated to assess the
accuracy of the SOMs. For multilayer neural nets we
employed the mean square error (mse), and for the net
with the best results the Matthews correlation coefficient
(mcc) was calculated.

Figure 1 shows the influence of the two scaling
methods on the descriptor vectors. Both scaling methods
transform the data in such a way that the data columns are

Fig. 1 Mean values of each
descriptor a before and b and c
after scaling (blue, drugs; red,
nondrugs). Without scaling (a)
an individual descriptor (the
third descriptor, Wiener Path
Index) dominates all other de-
scriptors. After scaling, a his-
togram equalization, b logistic
scaling, the contribution of the
descriptors are balanced
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standardized and thus no descriptor dominates the mo-
lecular representation simply due to large absolute origi-
nal values. In other words, after scaling the features rep-
resented by the set of descriptors have equal a priori
importance.

Self-organizing maps were developed using the com-
plete data set for training. Drugs and nondrugs could not
be separated using raw input data (Fig. 2). This might
have led to the conclusion that the descriptors used or the
particular method are not suited for this task. If, however,
scaled data were used, a separation tendency of the two
classes was observed on the resulting maps (Figs. 3 and
4). Obviously the scaling procedure had a positive influ-
ence on the separation of drugs and nondrugs. Logistic
scaling yielded the lowest error values (QE=0.54, TE=
0.29), followed by histogram equalization (QE=0.69, TE=
0.23). Without scaling both error measures produced
significantly higher values (QE=195, TE=0.41).

The SOM allows for an inspection of the importance of
individual descriptor variables on the classification. For

example, areas on the map with relatively high values of
Wiener polarity (variable 4), molecular weight (variable
5), and topological polar surface area (variable 30) co-
locate with drug molecules (Figs. 3 and 4), whereas the
descriptor “vertex adjacency equality” (variable 6) seems
to be dominant in nondrug molecules. Similar attempts to
understanding the underlying features were made in other
studies of “drug-likeness” resulting in comparable find-
ings. [1, 30, 31, 32] Most importantly, such an analysis is
meaningless for nonscaled data (Fig. 2). We conclude that
the SOM variable projection can be an additional tool to
identify variables which are important for a classification
and might be part of a variable selection procedure. This
interpretation is supported by U-matrix inspection. By
visualization of the U-matrix the distribution of the drugs
and nondrugs on the map can be seen. It is evident that
with normalization the map areas which belong to drug
and nondrug are less overlapping than it is in the case
without normalization (Figs. 2, 3, 4).

Fig. 2 SOM trained with the original, nonscaled data (QE=194.9;
TE=0.42). The large windows show the distribution of sets of
compounds (red circles) with the U-Matrix in the background
(gray-scale). The red circles indicate the fraction of the selected
compounds on the map areas. The lower right window is a plot of

the U-matrix with “fuzzy coloring”. This plot is only for better
visualization of clusters on the map (white, no molecules; black,
many molecules). The small maps show the U-matrix (upper left
map) and the influence of each individual descriptor on the clas-
sification result (cf. Table 1)

Fig. 3 Self-organizing map
trained with scaled data: histo-
gram equalization (QE=0.69;
TE=0.23). See legend to Fig. 2
for explanation
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In the next step we trained a supervised multilayer
neural network for drug/nondrug classification. In con-
trast to the SOM algorithm we employed a supervised
learning method, the back-propagation algorithm. For
updating the weights and biases we began with Leven-
berg–Marquardt back-propagation (LM). The network
had one hidden layer containing six hidden units. The mse
values obtained were 0.14 for histogram scaling, 0.13 for
logistic scaling, and 0.41 without scaling. With logistic
scaling the network model produced the most accurate
prediction. To see if the scaling would deliver a lower
error and better prediction with other update algorithms
we employed gradient descent with momentum (GDM),
gradient descent with adaptive learning rate (GDA), and
resilient back-propagation algorithm (RP). Table 2 gives
the mse for all cases. Two numbers of hidden units were
tested, six and ten hidden neurons. Generally, logistic
scaling and histogram equalization resulted in predictions
with lower error than without scaling. In some cases lo-
gistic scaling was favorite (e.g., with GDA, ten hidden
units) and in another case (e.g. with GDA, six hidden
units) with histogram equalization yielded better predic-
tion. But without scaling the highest mse values were
obtained, irrespective of the training method and the size

of the hidden layer. Overall, RP resulted in the best
model. For this reason we used the RP algorithm and
trained two additional networks containing two hidden
layers with (48+6) hidden units and (10+6) hidden units.
The results show that in all cases the scaling procedure
led to a better prediction.

Since a greater number of hidden units improved the
results, we then trained a net with two hidden layers and
more hidden units (50+10). This time we calculated the
mse and mcc for 4,600 training, 2,299 validation, and
2,300 test data (Table 3). The mse values were further
reduced compared to smaller networks, and again without
exception the scaling caused comparably smaller mse and
greater mcc values for all data sets. Logistic scaling
produced the best results overall.

In Figs. 5 (histogram equalization), 6 (logistic equal-
ization) and 7 (without scaling) the output of the nets
before (blue curves) and after (red points) hard-limiting
for (a) training data, (b) validation data, and (c) test data
are viewed. In all cases the influence of the hard limiting
can be seen.

In all cases studied in this work scaling of the data led
to a reduced error rate. The Matthews correlation coeffi-
cient was improved in all cases with scaling compared to

Fig. 4 Self-organizing map
trained with scaled data: logistic
scaling (QE=0.55; TE=0.29).
See legend to Fig. 2 for expla-
nation

Table 2 Mean square error
(mse) of the prediction of drugs
and nondrugs with a multilayer
neural network. The training
algorithm was back-propagation
with parameter update by gra-
dient descent with momentum
(GDM), gradient descent with
adaptive learning rate (GDA),
and resilient back-propagation
(RP)

mse

GDM GDA RP

No. of hidden units 6 10 6 10 6 10 (48+6) (10+6)
Histogram equalization 0.22 0.21 0.20 0.25 0.15 0.16 0.12 0.14
Logistic scaling 0.22 0.20 0.21 0.21 0.16 0.16 0.14 0.16
No scaling 0.25 0.50 0.24 0.26 0.25 0.25 0.25 0.24

Table 3 Mean square error
(mse) and Matthews correlation
coefficient (mcc) of a network
with (50+10) hidden units. The
number of training patterns was
4,600, 2,299 for validation, and
2,300 for testing

mse mcc

Training Validation Test Training Validation Test

Histogram equalization 0.13 0.16 0.15 0.66 0.55 0.57
Logistic scaling 0.14 0.15 0.16 0.61 0.57 0.58
No scaling 0.18 0.18 0.18 0.48 0.45 0.48
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using nonscaled data. It must be stressed that it was not
the purpose of this study to find the best scaling or the
best network topology for the classification task; rather
we intended to demonstrate the importance of scaling
whenever neural networks are used for classification.
Also, we are well aware that only a single test set was
used instead of multiple cross-validation, and results were
not subjected to a sound statistical analysis. Keeping this
in mind, we presume that the choice of an appropriate
scaling method critically depends on the data set, on the
set of descriptors and on the classification goal. This
should be taken to account when the performance of
neural networks is compared to other methods.
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